Selectively silencing GSK-3 isoforms reduces plaques and tangles in mouse models of Alzheimer's disease.

نویسندگان

  • David E Hurtado
  • Laura Molina-Porcel
  • Jenna C Carroll
  • Caryn Macdonald
  • Awo K Aboagye
  • John Q Trojanowski
  • Virginia M-Y Lee
چکیده

Glycogen synthase kinase-3 (GSK-3) is linked to the pathogenesis of Alzheimer's disease (AD), senile plaques (SPs), and neurofibrillary tangles (NFTs), but the specific contributions of each of the GSK-3 α and β isoforms to mechanisms of AD have not been clarified. In this study, we sought to elucidate the role of each GSK-3α and GSK-3β using novel viral and genetic approaches. First, we developed recombinant adeno-associated virus 2/1 short hairpin RNA constructs which specifically reduced expression and activity of GSK-3α or GSK-3β. These constructs were injected intraventricularly in newborn AD transgenic (tg) mouse models of SPs (PDAPP⁺/⁻), both SPs and NFTs (PDAPP⁺/⁻;PS19⁺/⁻), or wild-type controls. We found that knockdown (KD) of GSK-3α, but not GSK-3β, reduced SP formation in PDAPP⁺/⁻ and PS19⁺/⁻;PDAPP⁺/⁻ tg mice. Moreover, both GSK-3α and GSK-3β KD reduced tau phosphorylation and tau misfolding in PS19⁺/⁻;PDAPP⁺/⁻ mice. Next, we generated triple tg mice using the CaMKIIα-Cre (α-calcium/calmodulin-dependent protein kinase II-Cre) system to KD GSK-3α in PDAPP⁺/⁻ mice for further study of the effects of GSK-3α reduction on SP formation. GSK-3α KD showed a significant effect on reducing SPs and ameliorating memory deficits in PDAPP⁺/⁻ mice. Together, the data from both approaches suggest that GSK-3α contributes to both SP and NFT pathogenesis while GSK-3β only modulates NFT formation, suggesting common but also different targets for both isoforms. These findings highlight the potential importance of GSK-3α as a possible therapeutic target for ameliorating behavioral impairments linked to AD SPs and NFTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer's disease β-amyloid production

Glycogen synthase kinase 3 (GSK-3) dysregulation is implicated in the two Alzheimer's disease (AD) pathological hallmarks: beta-amyloid plaques and neurofibrillary tangles. GSK-3 inhibitors may abrogate AD pathology by inhibiting amyloidogenic gamma-secretase cleavage of amyloid precursor protein (APP). Here, we report that the citrus bioflavonoid luteolin reduces amyloid-beta (Abeta) peptide g...

متن کامل

A Functional Mouse Retroposed Gene Rps23r1 Reduces Alzheimer's β-Amyloid Levels and Tau Phosphorylation

Senile plaques consisting of beta-amyloid (Abeta) and neurofibrillary tangles composed of hyperphosphorylated tau are major pathological hallmarks of Alzheimer's disease (AD). Elucidation of factors that modulate Abeta generation and tau hyperphosphorylation is crucial for AD intervention. Here, we identify a mouse gene Rps23r1 that originated through retroposition of ribosomal protein S23. We ...

متن کامل

Transgenic mouse models for Alzheimer's disease: the role of GSK-3B in combined amyloid and tau-pathology.

Describing and understanding the pathological processes which devastate the brain of Alzheimer's disease (AD) patients remains a major target for experimental biology. We approached this problem by generating different types of single and double transgenic mice that develop pathological hallmarks of AD. In APP-V717 mice, the progression from intracellular amyloid to diffuse and senile plaques w...

متن کامل

GSK-3β, a pivotal kinase in Alzheimer disease

Alzheimer disease (AD) is the most common form of age-related dementia. The etiology of AD is considered to be multifactorial as only a negligible percentage of cases have a familial or genetic origin. Glycogen synthase kinase-3 (GSK-3) is regarded as a critical molecular link between the two histopathological hallmarks of the disease, namely senile plaques and neurofibrillary tangles. In this ...

متن کامل

Neurofibrillary Tangles and the Deposition of a Beta Amyloid Peptide with a Novel N-Terminal Epitope in the Brains of Wild Tsushima Leopard Cats

Beta amyloid (Aβ) deposits are seen in aged individuals in many of the mammalian species that possess the same Aβ amino acid sequence as humans. Conversely, neurofibrillary tangles (NFT), the other hallmark lesion of Alzheimer's disease (AD), are extremely rare in these animals. We detected Aβ deposits in the brains of Tsushima leopard cats (Prionailurus bengalensis euptilurus) that live exclus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 21  شماره 

صفحات  -

تاریخ انتشار 2012